已建站十年的老牌绿色软件站
不忘初心,坚持每日更新不易!

北风网Python零基础人工智能就业课程30G视频教程分享

北风网价值¥12800元 Python零基础人工智能就业课程30G视频教程免费分享,21世纪,属于人工智能的时代已经到来。诸多应用领域都有着人工智能的身影,如:搜索引擎、无人驾驶、百度大脑、讯飞语音以及苹果的Siri。本课程带你从零基础入门,本课程从理论到项目实战,层层深入学习,步步进阶。课程主要从高等数学必知必会、Python高级应用、Python项目、机器学习算法、机器学习项目、深度学习、推荐算法及数据挖掘、综合项目实战以及职业素养等全方位讲解,更加注重于实际操作以及开发经验的讲解,对学生的日常工作或未来发展将起到十分重要的指导作用。完美学习计划,成就精英人工智能工程师!

Pythonbeifeng

未来五年,我国人工智能市场空间广阔,发展速度远超全球。 2020年我国AI市场规模将达到91亿元,年复合增速约19.7%;同期,中国人工智能增速1亿元,年复合增速约为50%。

Pythonbeifeng

人工智能招聘领域,2000人以上大公司平均薪酬25.2k,相比之下,15-20人的公司只有16.2k, 人工智能工程师职位薪资逐年上升为12%,涨势迅猛。且就业薪资均超1W!未来还在持续上涨趋势。

阶段一、人工智能之训练成果报告可视化技术

课程一、数据可视化基础
1)可视化技术骨骼技术之HTML技术:HTML结构、HTML表单、HTML文档
2)可视化技术皮肤之CSS技术:CSS样式、样式引入技术
3)可视化技术驱动之Javascript与Jquery:Javascript事件、Javascript Dom和BOM操作、网页特效

课程二、图表可视化技术
1)百度图表可视化框架
2)百度图表可视化十大经典案例

课程三、Python核心编程
1)Python介绍、Anaconda+Pycharm安装、Python语法格式简介、编码规范简介、常用关键字介绍
2)变量与赋值、运算符和基本运算、位运算、字符串处理
3)列表元祖、字典、数组、切片、列表推导式、浅拷贝和深拷贝
4)条件判断语句、循环控制语句
5)函数的定义、函数闭包、装饰器、lambda表达式、递归函数及尾递归优化、常用内置函数/高阶函数
6)项目案例:约瑟夫环问题
7)类和实例、访问限制、继承和多态及多重继承、获取对象信息、实例属性和类属性、模块和包、类中的模式方法、异常和错误处理、debug调试

课程四、Python高级编程+数据可视化
1)时间库,主要讲解time、datetime,为之后时间序列分析做准备。
2)python链接数据库,使用pymysql、pyhive操作数据仓库,存储数据源采集结果,以及存储训练成果。
3)文件、目录操作,通过os,file等模块实现文件、目录操作,方便数据文件提取。
4)机器学习模块库,掌握数值计算库Numpy、数据分析库Pandas,为之后机器学习算法实现奠定基础。
5)数据可视化绘图库,使用matplotlib实现数据可视化

阶段二、人工智能之数据源采集及训练成果存储技术

课程五、非分布式存储技术
1)利用关系型数据库存储数据源以及训练成果数据,掌握关系型数据库原理和数据结构、数据库环境搭建、数据仓库创建、数据工作表创建、数据仓库数据类型设定、数据仓库CRUD

课程六、分布式存储技术
1)利用分布式数据仓库存储大数据源以及训练成果数据,掌握分布式环境搭建、分布式数据仓库Hive存储结构与原理、分布式数据仓库Hive实战应用

课程七、Tableau人工智能训练成果展示
1)训练成果可视化展示利器,掌握了解数据可视化意义、Tableau十大经典可视化图形展示、Tableau训练成果可视化案例

课程八、数据采集技术
1)数据采集技术原理,熟练掌握网络爬虫含义、爬虫原理以及反爬虫机制
2)数据采集应用,使用json、requests,lxml,beatuifulSoup模块实现数据的采集与解析
3)数据采集实战,实现百度图片下载、博客园博文数据采集、Python100例数据采集、QQ音乐数据采集及音乐文件下载

阶段三、人工智能之机器学习

课程九、数学基础
1)数据分析:熟练掌握常数e、导数、梯度、Taylor、gini系数、信息熵与组合数、梯度下降、牛顿法等知识点;
2)概率论:微积分与逼近论、极限、微分、积分基本概念、利用逼近的思想理解微分,利用积分的方式理解概率、概率论基础、古典模型、常见概率分布、大数定理和中心极限定理、协方差(矩阵)和相关系数、最大似然估计和最大后验估计等知识点;
3)线性代数及矩阵:线性空间及线性变换、矩阵的基本概念、状态转移矩阵、特征向量、矩阵的相关乘法、矩阵的QR分解、对称矩阵、正交矩阵、正定矩阵、矩阵的SVD分解、矩阵的求导、矩阵映射/投影等知识点;
4)凸显示:凸优化基本概念、凸集、凸函数、凸优化问题标准形式、凸优化之Lagerange对偶处、凸优化之牛顿法、梯度下降法求解

课程十、机器学习
1)机器学习概述
2)数据清洗和特征选择:实现特征抽取、特征转换、特征选择、降维、NLP特征工程
3)回归算法:Linear Regression算法、Lasso Regression算法、Ridge Regression/Classifier算法、Elastic Net算法、Logistic算法、K-邻近算法(KNN)
4)决策树、随机森林和提升算法:决策树算法: ID3、C4.5、CART、决策树优化、Bagging和Boosting算法、随机森林、Adaboost算法、GBDT算法、Xgboost、LightGBM
5)SVM:线性可分支持向量机、核函数理解、SMO算法、SVM回归SVR和分类SVC
6)聚类算法:各种相似度度量介绍及相关关系、K-means算法、K-means算法优缺点及变种算法、密度聚类、层、聚类、谱聚类
7)EM算法:最大似然估计、EM算法原理讲解、多元高斯分布的EM实现、主题模型pLSA及EM算法
8)贝叶斯算法:朴素贝叶斯、条件概率表达形式、贝叶斯网络的表达形式
9)隐马尔科夫模型:概率计算问题、前向/后向算法、HMM的参数学习、高斯混合模型HMM
10)LDA主题模型:LDA主题模型概述、共轭先验分布、Dirichlet分布、Laplace平滑、Gibbs采样详解、LDA与word2Vec效果比较。

课程十一、Pyspark
1)Hadoop基础
2)Spark基础
3)Spark Mlib机器学习

阶段四、人工智能之智能推荐技术

课程十二、Python开发高手推荐系统
1)推荐算法概述
2)推荐算法理论介绍(协同过滤、基于内存的推荐、基于知识的推荐等)
3) 数据挖掘相关算法(关联规则、Aprior算法)
4) 项目案例:音乐推荐、隐因子模型推荐

阶段五、人工智能之深度学习

课程十三、深度学习
1)Tensorflow基本应用:掌握Tensorflow环境配置、Tensorflow基本概念、Tensorflow函数式编程、Tensorflw执行流程、Tensorflw之上的工具库:Keras,以及基于Tensorflow实现回归算法实现。
2)深度学习概述
3)感知器神经网络
4)BP神经网络
5)RBF径向基神经网络
6)CNN卷积神经网络
7)RNN循环神经网络
8)生成对抗网络(GAN,WGAN,EBGAN,DCGAN等)

阶段六、人工智能之图像处理技术

课程十四、图像处理篇
1)图像基础:图像读,写,保存,画图(线,圆,多边形,添加文字)
2)图像操作及算数运算:图像像素读取,算数运算,ROI区域提取
3)图像颜色空间运算:图像颜色空间相互转化
4)图像几何变换:平移,旋转,仿射变换,透视变换等
5)图像形态学:腐蚀,膨胀,开/闭运算等
6)图像轮廓:长宽,面积,周长,外接圆,方向,平均颜色,层次轮廓等
7)图像统计学:图像直方图
8)图像滤波:高斯滤波,均值滤波,双边滤波,拉普拉斯滤波等

阶段七、人工智能之自然语言处理技术

课程十五、自然语言处理
1)词(分词,词性标注)代码实战
2)词(深度学习之词向量,字向量)代码实战
3)词(深度学习之实体识别和关系抽取)代码实战
4)词(关键词提取,无用词过滤)代码实战
5)句(句法分析,语义分析)代码实战
6)句(自然语言理解,一阶逻辑)代码实战
7)句(深度学习之文本相似度)代码实战

阶段八、人工智能之企业项目实战

实战型项目一、基于FaceNet、云平台的人脸识别及人脸检索系统
使用深度学习框架从零开始完成人脸检测的核心技术图像类别识别的操作,从数据预处理开始一步步构建网络模型并展开分析与评估,方便大家快速动手进行项目实践!识别上千种人脸,返回层次化结构的每个人的标签。

实战型项目二、基于GBDT、Randomforest实现千万级P2P金融系统反欺诈系统
目前比较火的互联网金融领域,实质是小额信贷,小额信贷风险管理,本质上是事前对风险的主动把控,尽可能预测和防范可能出现的风险。本项目应用GBDT、Randomforest等机器学习算法做信贷反欺诈模型,通过数据挖掘技术,机器学习模型对用户进行模型化综合度量,确定一个合理的风险范围,使风险和盈利达到一个平衡的状态。

实战型项目三、基于Seq2Seq的智能客服系统
聊天机器人/智能客服是一个用来模拟人类对话或者聊天的一个系统,利用深度学习和机器学习等NLP相关算法构建出问题和答案之间的匹配模型,然后可以将其应用到客服等需要在线服务的行业领域中,聊天机器人可以降低公司客服成本,还能够提高客户的体验友好性。 在一个完整的聊天机器人实现过程中,主要包含了一些核心技术,包括但不限于:爬虫技术、机器学习算法、深度学习算法、NLP领域相关算法。通过实现一个聊天机器人可以帮助我们队AI整体知识的一个掌握。

实战型项目四、基于NLP实现诗歌机器人
机器人写诗歌/小说是一种基于NLP自然语言相关技术的一种应用,在实现过程中可以基于机器学习相关算法或者深度学习相关算法来进行小说/诗歌构建过程。人工智能的一个终极目标就是让机器人能够像人类一样理解文字,并运用文字进行创作,而这个目标大致上主要分为两个部分,也就是自然语言理解和自然语言生成,其中现阶段的主要自然语言生成的运用,自然语言生成主要有两种不同的方式,分别为基于规则和基于统计,基于规则是指首先了解词性及语法等规则,再依据这样的规则写出文章;而基于统计的本质是根据先前的字句和统计的结果,进而判断下一个字的生成,例如马尔科夫模型就是一种常用的基于统计的方法。

实战型项目五、基于Adaboost的百度音乐系统文件分类系统
音乐推荐系统就是利用音乐网站上的音乐信息,向用户提供音乐信息或者建议,帮助用户决定应该听什么歌曲。而个人化推荐则是基于音乐信息及用户的兴趣特征、听歌历史行为,向用户推荐用户可能会感兴趣的音乐或者歌手。推荐算法主要分为以下几种:基于内容的推荐、协同过滤推荐、基于关联规则推荐、基于效用推荐、基于知识推荐等;推荐系统常用于各个互联网行业中,比如音乐、电商、旅游、金融等。

实战型项目六、基于贝叶斯、CNN的邮件情感分析过滤系统
邮件主要可以分为有效邮件和垃圾邮件两大类,有效邮件指的邮件接收者有意义的邮件,而垃圾邮件转指那些没有任何意义的邮件,其内容主要包含赚钱信息、成人广告、商业或者个人网站广告、电子杂志等,其中垃圾邮件又可以发为良性垃圾邮件和恶性垃圾邮件,良性垃圾邮件指的就是对收件人影响不大的信息邮件,而恶性垃圾邮件指具有破坏性的电子邮件,比如包含病毒、木马等恶意程序的邮件。垃圾邮件过滤主要使用使用机器学习、深度学习等相关算法,比如贝叶斯算法、CNN等,识别出所接收到的邮件中那些是垃圾邮件。

实战型项目七、基于生物学神经网络实现手工数字识别
人认知世界的开始就是从认识数字开始的,深度学习也一样,数字识别是深度学习的一个很好的切入口,是一个非常经典的原型问题,通过对手写数字识别功能的实现,可以帮助我们后续对神经网络的理解和应用。选取手写数字识别的主要原因是手写数字具有一定的挑战性,要求对编程能力及神经网络思维能力有一定的要求,但同时手写数字问题的复杂度不高,不需要大量的运算,而且手写数字也可以作为其它技术的一个基础,所以以手写数字识别为基础,贯穿始终,从而理解深度学习相关的应用知识。

实战型项目八、基于logistic回归实现癌症筛选检测
技术可以改变癌症患者的命运吗,对于患有乳腺癌患者来说,复发还是痊愈影响这患者的生命,那么怎么来预测患者的患病结果呢,机器学习算法可以帮助我们解决这一难题,本项目应用机器学习logistic回归模型,来预测乳腺癌患者复发还是正常,有效的预测出医学难题。

实战型项目九、基于回归分析实现葡萄酒质量检测系统
随着信息科技的快速发展,计算机中的经典算法在葡萄酒产业中得到了广泛的研究与应用。其中机器学习算法的特点是运用了人工智能技术,在大量的样本集训练和学习后可以自动地找出运算所需要的参数和模型。

实战型项目十、基于协同推荐实现淘宝网购物篮分析推荐系统
购物篮分析(Market Basket Analysis)即非常有名的啤酒尿布故事的一个反应,是通过对购物篮中的商品信息进行分析研究,得出顾客的购买行为,主要目的是找出什么样的物品会经常出现在一起,也就是那些商品之间是有很大的关联性的。通过购物篮分析挖掘出来的信息可以用于指导交叉销售、追加销售、商品促销、顾客忠诚度管理、库存管理和折扣计划等业务;购物篮分析的最常用应用场景是电商行业,但除此之外,该算法还被应用于信用卡商城、电信与金融服务业、保险业以及医疗行业等。

实战型项目十一、基于Python纯源码手工实现梯度下降回归算法
梯度下降法(英语:Gradient descent)是一个一阶最优化算法,通常也称为最速下降法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程则被称为梯度上升法。

实战型项目十二、基于TensorFlow实现回归算法
回归算法是业界比较常用的一种机器学习算法,通过应用于各种不同的业务场景,是一种成熟而稳定的算法种类;TensorFlow是一种常用于深度学习相关领域的算法工具;随着深度学习热度的高涨,TensorFlow的使用也会越来越多,从而使用TensorFlow来实现一个不存在的算法,会加深对TensorFlow的理解和使用;基于TensorFlow的回归算法的实现有助于后续的TensorFlow框架的理解和应用,并可以促进深度学习相关知识的掌握。

实战型项目十三、基于ssd和yolo实现行人检测
行人检测是利用图像处理技术和深度学习技术对图像或者视频序列中是否存在行人并给予精确定位。学习完行人检测技术后,对类似的工业缺陷检测,外观检测和医疗影像检测等目标检测范畴类的项目可以一通百通。该技术可与行人跟踪,行人重识别等技术结合,应用于人工智能系统、车辆辅助驾驶系统、智能机器人、智能视频监控、人体行为分析、智能交通等领域。由于行人兼具刚性和柔性物体的特性 ,外观易受穿着、尺度、遮挡、姿态和视角等影响,使得行人检测成为计算机视觉领域中一个既具有研究价值同时又极具挑战性的热门课题。

实战型项目十四、基于PySpark大数据机器学习框架
Spark由AMPLab实验室开发,其本质是基于内存的快速迭代框架,“迭代”是机器学习最大的特点,因此非常适合做机器学习。得益于在数据科学中强大的表现,Python是一种解释型、面向对象、动态数据类型的高级程序设计语言,结合强大的分布式内存计算框架Spark,两个领域的强者走到一起,自然能碰出更加强大的火花(Spark可以翻译为火花)。
Spark的Python API几乎覆盖了所有Scala API所能提供的功能,只有极少数的一些特性和个别的API方法,暂时还不支持。但通常不影响我们使用Spark Python进行编程。

实战型项目十五、基于Python源码实现LSTM神经网络
LSTM(Long Short-Term Memory)是长短期记忆网络,是一种时间递归神经网络,适合于处理和预测时间序列中间隔和延迟相对较长的重要事件。
LSTM 已经在科技领域有了多种应用。基于 LSTM 的系统可以学习翻译语言、控制机器人、图像分析、文档摘要、语音识别图像识别、手写识别、控制聊天机器人、预测疾病、点击率和股票、合成音乐等等任务。

阶段九、人工智能篇之企业项目实战(选修)

通过python数据科学库numpy,pandas,matplot结合机器学习scikit-learn完成一些列的机器学习案例。算法课程注重于原理推导与流程解释,结合实例通俗讲解复杂的机器学习算法,并以实战为主。

课程十六、基于Python数据分析与机器学习案例实战教程
通过python数据科学库numpy,pandas,matplot结合机器学习库scikit-learn完成一些列的机器学习案例。算法课程注重于原理推导与流程解释,结合实例通俗讲解复杂的机器学习算法,并以实战为主,所有课时都结合代码演示。算法与项目相结合,选择经典kaggle项目,从数据预处理开始一步步代码实战带大家快速入门机器学习。旨在帮助同学们快速上手如何使用python库来完整机器学习案例。选择经典案例基于真实数据集,从数据预处理开始到建立机器学习模型以及效果评估,完整的讲解如何使用python及其常用库进行数据的分析和模型的建立。对于每一个面对的挑战,分析解决问题思路以及如何构造合适的模型并且给出合适评估方法。在每一个案例中,同学们可以快速掌握如何使用pandas进行数据的预处理和分析,使用matplotlib进行可视化的展示以及基于scikit-learn库的机器学习模型的建立。

课程十七、AI法律咨询大数据分析与服务智能推荐项目(第一季)
本项目主要研究法律资讯网站,依据海量数据,研究用户兴趣偏好,分析用户的需求和行为,发现用户兴趣点,从而引导用户发现自己的信息需求,准确推荐给所需用户。
项目的业务系统底层主要采用JAVA架构,大数据分析主要采用Hadoop框架,其中包括Kettle实现ETL、SQOOP、Hive、Kibana、HBASE、Spark以及人工智能算法等框架技术。

课程十八、电商大数据情感分析与AI推荐实战项目(第一季)
本项目从开发的角度以大数据、PHP技术栈为基础,使用真实商用表构和脱敏数据,分三步构建商用系统、真实大数据环境、进行推断分析以及呈现结果。
项目课程的完整性、商业性,可以使学者尽可能完整地体会真实的商业需求和业务逻辑。
完整的项目过程,以大数据为导向,使PHP技术栈的同学得以窥见和学到一个完整商业大数据平台项目的搭建方法。及数据挖掘和AI技术在数据工作中的实战应用。

课程十九、AI大数据互联网电影智能推荐(第一季)
本课程主要讲解针对用户进行智能推荐电影,依据海量数据,研究用户兴趣偏好,分析用户的需求和行为,发现用户兴趣点,从而引导用户发现自己的信息需求,准确推荐给所需用户。
项目的业务系统底层主要采用Python架构,大数据分析主要采用Hadoop框架,其中包括Kettle实现ElasticSearch、ETL、SQOOP、Hive、Flume、Kibana、HBASE、Spark以及人工智能算法等框架技术

课程二十、AI大数据基站定位智能推荐商圈分析项目实战(第一季)
随着当今个人手机终端的普及、出行人群中手机拥有率和使用率已达到相当高的比例,根据手机信号在真实地理空间的覆盖情况,将手机用户时间序列的手机定位数据,映射至现实地理位置空间位置,即可完整、客观地还原出手机用户的现实活动轨迹,从而挖掘出人口空间分布与活动联系特征信息。
商圈是现代市场中企业市场活动的空间,同时也是商品和服务享用者的区域。商圈划分为目的之一是研究潜在顾客分布,以制定适宜的商业对策。
本项目以实战为基础结合大数据技术Hadoop、.Net技术全栈为基础,采用真实商业数据,分不同环节构建商用系统、真实大数据环境、进行推断分析及呈现数据。

阶段十、架构实战篇(选修)

北风网的提供项目全部来自一线开发中,项目代码量大,为了让学员尽快适应到企业中的开发项目,北风网提供大量的精品项目案例,其中包括电商项目,教育管理系统,仿百度搜索引擎等。学员可以根据自己的学习情况和工作背景来选择项目。

实战型项目一、大数Python金融应用编程
本教程介绍使用Python进行数据分析和金融应用开发的基础知识。课程从介绍简单的金融应用开始,带领学员回顾Python的基础知识,并逐步学习如何将Python应用到金融分析编程。使学员在实战的环境下理解Python在金融应用开发中的具体应用方式,训练学员独立开发Python模块的能力。

实战型项目二、Python实战开发之Flask Web框架在商城项目中的应用
本课程采用讲解与实例相结合的方式,不仅介绍了Flask安装、使用等基础知识,还讲解了模板引擎Jinja、Sqlalchemy 存储引擎、WTF 表单等,即使从未接触Flask,你也能轻松学会构建完整的Web应用。

实战型项目三、基于Python机器学习、项目案例实战
本课程主要通过python库numpy,pandas,matplot结合机器学习库完成一些机器学习案例。旨在帮助同学们快速上手如何使用python库来完整机器学习。选择经典案例基于真实数据集,从数据预处理开始到建立机器学习模型以及效果评估,完整的讲解机器学习案例。

实战型项目四、零基础实战机器学习
本教程系统的介绍了机器学习的目的和方法。并且针对每一种常用的方法进行了详细的解析,用实例来说明具体的实现,学生可以跟着一步步完成。在面对现实的问题的时候,可以找到非常可靠的参照。本课程在最开始讲解了Python语言的基础知识,以保证后面的课程中可以顺利进行。更多的Python语言的知识,需要学员自己去找更多的资料进行学习。
本课程主要讲述了两大类机器学习的方法:有监督学习和无监督学习,其中有监督学习里面,又分为分类和预测数值型数据。这些算法都是基础的算法。这样可以降低学习的难度,容易理解机器学习思路和实现的过程。

实战型项目五、Bootstrap、Angular Js修炼之道
教程由浅入深,一步一步学习Spring Boot,最后学到的不单单是基础! 使用Spring Boot 进行Web 开发、数据访问、安全控制、批处理、异步消息、系统集成、开发与部署、应用监控、分布式系统开发等,该课程让你能够快速搭建企业级应用的框架,该课程将会以spring mvc开始学习,从而引入spring boot,创建独立的Spring项目,内置Tomcat和Jetty容器提供一个starter POMs来简化Maven配置,同时提供了一系列大型项目中常见的非功能性特性,如安全、指标,健康检测、外部配置等完全没有代码生成和xml配置文件。

实战型项目六、基于Python的微信公众平台二次开发
本课程基于python和SAE平台,由易到难,深入浅出的讲解微信公众平台各种常见功能的开发,包括接口验证,基本消息回复,自定义菜单,服务号高级接口,wsgi环境,python常用框架bottle、webpy、django。

实战型项目七、Python实战开发之Pyramid Web框架在商城项目中的应用
本课程为Pyramid Web开发入门课程,主要讲解了Python语言基础,Pyramid框架入门和常见的项目开发方法。本课程以项目为导向,结合基础知识的讲解,允许没有相关基础的学员迅速入门。同时,有鉴于本课程以项目开发为导向,故可以让学员融入实际开发过程中,尽快积累经验。

实战型项目八、深入MongoDB高级开发管理+信息数据监控Snmp服务器、数据库数据采集
本课程由浅入深,全面、系统地介绍了MongoDB基础、应用、管理、性能优化、数据库的架构,环境搭建实例,编程实例等内容。课程中的每一章都提供了大量的 实例代码,以方便学者进行练习和学习。每个例程都经过精挑细选,具有很强的针对性,适合各个阶段的读者的学习。

实战型项目九、NoSQL之Redis高性能的key-value数据库深入浅出
1)redis介绍和基本使用,安装redis,安装php-redis
2)redis数据类型string,Web Session缓存
3)使用redis进行数据库缓存,redis数据类型list
4)redis的数据持久机制及订阅/发布模型
5)redis数据类型set/sorted set,使用redis实现auto complete
6)基于访问频率的auto complete,redis的内存分配方法
7)redis数据类型hash,redis数据类型的内存模型(1)
8)redis数据类型的内存模型(2),与key相关的操作方法
9)如何分布式的使用redis,transaction和server相关的操作,redis接口协议
10)使用redis实现一个简单的微博系统

实战型项目十、实战Mysql数据库应用开发(安全、存储过程、触发器、集群配置配项目实战)
通过本课程的学习,用户可在最短的时间内掌握MySQL的安装配置与使用、MySQL DML特性的高级用法、MySQL常见内置函数的高级用法、MySQL中存储过程写法、视图、用户自定义函数、触发器等高级用法、MySQL中的事务功能。并了解图形化管理工具的使用、字符集及乱码处理、MySQL的数据备份与还原技术、MySQL的安全技术、MySQL的系统管理、MySQL集群的配置。

阶段十一、区块链(选修)

区块链(Blockchain)是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式。所谓共识机制是区块链系统中实现不同节点间建立信任、学算法
区块链是比特币的底层技术,像一个数据库账本,记载所有的交易记录。这项技术也因其安全、便捷的特性逐渐得到了银行与金融业的关注。

一、课程介绍
1)区块链的发展
2)课程安排

3)学习目标

二、区块链的技术架构
1)数据层 创世区块 交易记录 私钥,公钥和钱包地址
2)数据层 & 通讯层 记账原理 Merkle 树和简单支付验证(SPV) P2P通讯 数据通信和验证
3)共识层
4)激励层 拜占庭将军问题与POW Pos DPos PBFT 挖矿 交易费 图灵完备和非完备

5)合约层 比特币脚本 以太坊智能合约 fabic智能合约 RPC远程调用
6)应用层
7)总结 接口调用 DAPP的使用 应用场景的部署 重要概念和原理

三、环境搭建
1)以太坊 以太坊介绍 以太坊开发过程 图形界面客户端使用 供应链的应用 保险领域的应用 DAO的介绍和应用
2)以太坊 以太坊本地开发环境的搭建 以太坊分布式集群环境的搭建

3)hyperledger项目fabric介 fabric介绍 fabric本地开发环境搭建 fabric分布式集群环境搭建

四、案例和DEMO
1)案例讲解 支付和清结算 公益行业的应用 供应链的应用 保险领域的应用 DAO的介绍和应用
2)Demo介绍 发币和交易Demo

3)Demo介绍 数据资产的确权和追溯

阶段十二、用人工智能预测金融量化交易投资系列课程

程序化交易:又称程式交易,发源于上世纪80年代的美国,其最初的定义是指在纽约股票交易所(NYSE)市场上同时买卖超过15只以上的股票组合;像高盛、摩根士丹利及德意志银行都是在各大交易市场程序化交易的最活跃参与会员。
本课程主要面向意愿从事金融量化交易人员、金融行业从业人员、金融策略开发人员及投资经验丰富而想实现计算机自动下单人员;主要讲解了证券期货程序化实现原理及过程,通过本课程的学习,您可以根据自己的意愿打造属于自己的量化投资交易系统; 本课程主要用到的技术手段有:Python、Pandas、数据分析、数据挖掘机器学习等。

一、程序化交易数据获取与清洗讲解
1)数据的清洗与合成
2)K线图绘制

3)技术指标开发讲解
4)数据的获取

二、回测框架搭建讲解
1)回测框架搭建背景及基本流程讲解

2)回测框架实现及收益指标讲解

三、程序化交易部分实现讲解
1)CTP技术讲解
2)程序化API讲解

3)程序化交易具体实现讲解

阶段十三、阿里云认证

课程二十一、云计算 – 网站建设:部署与发布
阿里云网站建设认证课程教你如何掌握将一个本地已经设计好的静态网站发布到Internet公共互联网,绑定域名,完成工信部的ICP备案。

课程二十二、云计算 – 网站建设:简单动态网站搭建
阿里云简单动态网站搭建课程教你掌握如何快速搭建一个WordPress动态网站,并会对网站进行个性化定制,以满足不同的场景需求。

课程二十三、云计算 – 云服务器管理维护
阿里云服务器运维管理课程教你掌握快速开通一台云服务器,并通过管理控制台方便地进行服务器的管理、服务器配置的变更和升级、数据的备份,并保证其可以正常运转并按业务需求随时进行配置的变更。

课程二十四、云计算 – 云数据库管理与数据迁移
阿里云云数据库管理与数据迁移认证课程掌握云数据库的概念,如何在云端创建数据库、将自建数据库迁移至云数据库MySQL版、数据导入导出,以及云数据库运维的常用操作。

课程二十五、云计算 – 云存储:对象存储管理与安全
阿里云云储存认证课程教你掌握安全、高可靠的云存储的使用,以及在云端存储下载文件,处理图片,以及如何保护数据的安全。

课程二十六、云计算 – 超大流量网站的负载均衡
掌握如何为网站实现负载均衡,以轻松应对超大流量和高负载。

课程二十七、大数据 – MOOC网站日志分析
本课程可以帮助学员掌握如何收集用户访问日志,如何对访问日志进行分析,如何利用大数据计算服务对数据进行处理,如何以图表化的形式展示分析后的数据。

课程二十八、大数据 – 搭建企业级数据分析平台
模拟电商场景,搭建企业级的数据分析平台,用来分析商品数据、销售数据以及用户行为等。

课程二十九、大数据 – 基于LBS的热点店铺搜索
本课程可以帮助学员掌握如何在分布式计算框架下开发一个类似于手机地图查找周边热点(POI)的功能,掌握GeoHash编码原理,以及在地理位置中的应用,并能将其应用在其他基于LBS的定位场景中。
课程中完整的演示了整个开发步骤,学员在学完此课程之后,掌握其原理,可以在各种分布式计算框架下完成此功能的开发,比如MapReduce、Spark。

课程三十、大数据 – 基于机器学习PAI实现精细化营销
本课程通过一个简单案例了解、掌握企业营销中常见的、也是必需的精准营销数据处理过程,了解机器学习PAI的具体应用,指导学员掌握大数据时代营销的利器—通过机器学习实现营销。

课程三十一、大数据 – 基于机器学习的客户流失预警分析
本课程讲解了客户流失的分析方法、流程,同时详细介绍了机器学习中常用的分类算法、集成学习模型等通用技能,并使用阿里云机器学习PAI实现流失预警分析。可以帮助企业快速、准确识别流失客户,辅助制定策略进行客户关怀,达到挽留客户的目的。

课程三十二、大数据 – 使用DataV制作实时销售数据可视化大屏
帮助非专业工程师通过图形化的界面轻松搭建专业水准的实时可视化数据大屏,以满足业务展示、业务监控、风险预警等多种业务的展示需求。

课程三十三、大数据 – 使用MaxCompute进行数据质量核查
通过本案例,学员可了解影响数据质量的因素,出现数据质量问题的类型,掌握通过MaxCompute(DateIDE)设计数据质量监控的方法,最终独立解决常见的数据质量监控需求。

课程三十四、大数据 – 使用Quick BI制作图形化报表
阿里云Quick BI制作图形化报表认证课程教你掌握将电商运营过程中的数据进行图表化展现,掌握通过Quick BI将数据制作成各种图形化报表的方法,同时还将掌握搭建企业级报表门户的方法。

课程三十五、大数据 – 使用时间序列分解模型预测商品销量
使用时间序列分解模型预测商品销量教你掌握商品销量预测方法、时间序列分解以及熟悉相关产品的操作演示和项目介绍。

课程三十六、云安全 – 云平台使用安全
阿里云云平台使用安全认证课程教你了解由传统IT到云计算架构的变迁过程、当前信息安全的现状和形势,以及在云计算时代不同系统架构中应该从哪些方面利用云平台的优势使用安全风险快速降低90%。

课程三十七、云安全 – 云上服务器安全
阿里云云上服务器安全认证课程教你了解在互联网上提供计算功能的服务器主要面临哪些安全风险,并针对这些风险提供了切实可行的、免费的防护方案。

课程三十八、云安全 – 云上网络安全
了解网络安全的原理和解决办法,以及应对DDoS攻击的方法和防护措施,确保云上网络的安全。

课程三十九、云安全 – 云上数据安全
了解云上数据的安全隐患,掌握数据备份、数据加密、数据传输安全的解决方法。

课程四十、云安全 – 云上应用安全
了解常见的应用安全风险,SQL注入原理及防护,网站防篡改的解决方案等,确保云上应用的安全。

课程四十一、云安全 – 云上安全管理
了解云上的安全监控方法,学会使用监控大屏来监控安全风险,并能够自定义报警规则,确保随时掌握云上应用的安全情况。

注意:关于此教程大家看上面的截图考虑是否下载,感觉里面的内容跟这个标题的内容有点区别啊,这点都不重要的重要的是能帮助到大家就好,学完这个30G教程你也能成为大牛。

下载地址

赞(1075)

这些信息可能会帮助到你: 下载帮助 | 报毒说明 | 进站必看 | 关于我们

版权声明:本文采用知识共享 署名4.0国际许可协议 [BY-NC-SA] 进行授权
文章名称:《北风网Python零基础人工智能就业课程30G视频教程分享》
文章链接:https://www.ypojie.com/6825.html
免责声明:根据《计算机软件保护条例》第十七条规定“为了学习和研究软件内含的设计思想和原理,通过安装、显示、传输或者存储软件等方式使用软件的,可以不经软件著作权人许可,不向其支付报酬。”您需知晓本站所有内容资源均来源于网络,仅供用户交流学习与研究使用,版权归属原版权方所有,版权争议与本站无关,用户本人下载后不能用作商业或非法用途,需在24个小时之内从您的电脑中彻底删除上述内容,否则后果均由用户承担责任;如果您访问和下载此文件,表示您同意只将此文件用于参考、学习而非其他用途,否则一切后果请您自行承担,如果您喜欢该程序,请支持正版软件,购买注册,得到更好的正版服务。
本站是非经营性个人站点,所有软件信息均来自网络,所有资源仅供学习参考研究目的,并不贩卖软件,不存在任何商业目的及用途,网站会员捐赠是您喜欢本站而产生的赞助支持行为,仅为维持服务器的开支与维护,全凭自愿无任何强求。